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A strain-energy theory is developed fur the calculatien ef the 
buckling load in pure bending of reinforced monocoque cylindem which 
have a symmetric cutout on the compression &de and buckle according; to 
the gf3Eerdl. II&X.bility pattern. Computatieus are carrLed out for the 
cylinders teeted.earlie$ at the Polytechnic Institute of Brocklyn 
Aeronautical Labor'atories. The thearetfcal curve is sitilar in shape to 
that obtained experLraent,aXLj, but the theoretical values are consistently 
too high. The-deviation fs 39.3 percent in the woret cme. 

. 

Gener~~inetability is &fined a5 the simultareom. buckliug.of,the. 
lon&tud+l end Cikcumfe~entiai reinfoGoi& elemnte .of a:n?onocoque. 
cylinder together with'the sheet attakhed to thy+. The general instabi& 
itg of reinforced circulal'monocoque cylinde,re.sub,jected to pure bending 
has been i&&&a-ted in some detail at Polytechnfc inst$.tute of Brooklyn 
Aeronautical Labo~ator+es'.,and Gu&enheim.Aer++t&cal Laboratory, 
California I$titute of Techimlogy,under the sponsorship of the Natiouab 
Advisory ComuZttee fog Aerckautics (references 1 to.8). Thia theorstfcel 
aud exper%ntal work dealt with complete cylinder8 not ha-ring cutoutls.' 
It'can be eqected.,that a cutout decreases the buckling load in general 
instability ein& part of the elastic 81.1pp0rt is loetwhen a portion of 
the structure is re&ved. This coaecture was,veriffed-in recent 'exper- 
iments carried out'at Polytechnic Institute of'Brooklyn Aeronautical 
Laboratories which dealt with the general instability of and the etrese 
distribution Is monocoque cylinders with a symmetri.c cutout. Reference. 
9 contains a report on these experiments. A theoretical study of the 
stress dbtribution in the cylinders &I presented in reference 10. . 
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Reference 11 deals with an experimental investigation of cylinders having 
a side cutout. 

In the present report the buckling load of reinforced monocoque cyl- 
inders with a symmetric cutout,on the compression side is calculated by 
strain-energy methods. The deflected shape at buckling is represented 
by a full sine wave extending over the length of the cutout in the axial 
direction and by the first seven terms of a Fourier expansion In the cir 
cumferential direction. The circumferential coordinate is measured from 
the edge of the cutout and the length of the interval in which the 
Fourier series is defined is considered as one of the p aremeters of the 
problem. The boundary conditions at the 6Ad of the interval determine 
four of the seven coefficients of the series while one of them is inde- 
termilnate as in all buckling problems. The remaining two coefficients, 
as well as the wave-length parameter, are calculated fram th6 requirement 
that the bucklingloadbe aminimum. 

The following strain--energy quantities are considered: radial and 
tangential bending as well as torsion of the stringers; bending of the 
rings in their plane; and shear in the sheet. The extensional strain 
energy stored in the sheet is taken into account by adding sn effective 
width of sheet to the stringers and the rings. in the calculation of 
the work of the external forces a linear force dl8tribUtiqA ie ae8UIMd 
in preference to a linear strain distribution in bending. This ass- 
tion is in better agreement with the experiments described in reference 9. 

The buckling load is calculated from the requirement that the strain 
energy correspcnding to the transition from the unbuckled into the buck- 
le'd shape be equal to the work done by the applied loade. The minimum 
value of the buckling load is found by assuming the circumferential wave 
length to be equal to the length of some integral number of stringer 
fields, calculating the values of the two Fourier coefficients that min- 
imize the buckling load in the case of the assumed wave length, determin- 
ing the buckling load, and cor~aring it with values obtained on the as- 
sumption of other differentwave lengths. The final results of the 
numerical work are presented in the form of buckling loads calculated for 
three different circumferential wave lengths for each of the three sizes 
of the cutouts tested. In each case these buckling loads define a mini- 
mum. All the calculations were carried out for one-half the cylinder 
because of the symmetry of both structure and loading. 

For a substantial share in the numerical work the authors are in- 
debted to Bernard Levine. The investigation was conducted under the 
sponsorship snd with the financial aid of the National Advisory Ccmmittee 
for Aeronautics. 
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a,.so,al,a2,ss Fourier coefficient6 

a cross-sectional area of a stringer plus its effsctive width 

b,bl,bab-s Fourier coefficients 

C 

d 

E 

G 

geomettic factor in torsional rigidity Gc 

width of panel measvursd along the circumference 

YouAg's modulus 

shear modulus 

GO 

%ff 

1 

shear modulus of sheet co7ering at zero compressive load 

effective shear modulus 

iAdBX indiC&ti~ pOSftfOA UOAg Ch’CUUlfW?8ACS 

I 

ir 

moment of inertia 

moment of inertia of ring section and its effective Width 
of sheet for bending in its own plane 

15 trr moment of fnertia of stringer section and its effective 
tidth of sheet for bendIng in the radial direction 
(about a ~ent1e.l &a) 

%trt moment of inertia of stringer section and its effective 
width of sheet for bending in the teqential direction 
(about a radial exis) 

3 index indicating position along axial directZon 

kls%hJk trigonometric fun&Ions Of cp, x, n, a, b 

II 

Ll 

m 

length of cutout 

distance between adjacent ring8 

number of rings involved in the failure 

M . applied bending moment; function of n, a, b appearfng in 
the strain enera of bending in the rings 
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%r applied bending momeilt at general inst&ility 

n parameter defining the length of Ike generfi infc+&bility 
in the circur&erentML direction 

N = 0 l 02'7fs C(2nr/d) + l] -, 

P1t Pa p01yn0mia.l Punctions of a and b 

P cr 

pi 

& 

r 

R. 

8 

S 

t 

u 

Ur 

%h 

U str, 

U s trt 

Ut 

2v 

wr 

force carried by one of the string933 at the edge 02 the 
cutout at g&mral instability 

force carried by tie ith stringer 

function of x appearing f.n the &mar &rain enorgy 

radius of cylinder 

function of 'cp, n, a; b appearing in the shear strain 
energy 

m&or of stringers involved in one-half *tile general- 
illstfibili ty bulge 

total. nut&er of stringers in the cylinder 

thicknens of sheet covering 

8traIn energy ,, 

stmin energy stored in tho 155~ because of bending (of the 
rlnga) in their om plme 

strain energy store4 in the eheet covering bscawe of 
sheai r - . __ 

etraM energy stored in t&o etringers because of bending 
about a tangential a~it3 

s"kcain energy atorts; in the stringera because of bending 
about a rsdL&l. axie 

etrain energy stored in the ntrtngere because of torsion 

effective width of sheet 

radial dieplaceraent of a point 011 a,ring or a stringer 
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Wt tangential diaplacement~of a point on a ring or a stringer 
,. ..' 

W work done by the applied forces 

X 

2a 

%?rw 

coordinate measuring 

der from the edge 

cutout angle 

coefficfente used in 
in a panel due to 

Y shear strain 

distance along the exis of the cylill- 
of the cutout 

the calculation of the shear atrain 
displacement8 of its corners 

6 distance ofneutralaxis from 
inder 

E 

%? 

normal strain in a striqer 

buckling strain af a penetl of 

horizontal diameter of cyl- 

sheet covering 

cp angulsr coordinate with origin at the edge of the cutout 

In the experiments described in reference 9 it was observed that at 
buckling the wq7e length in the axial direction we.8 almost exactly equal 
to the lan@h of the cutout. For thie reason it is assumed in the theory 
that the rings.bordering the cutout are rigid in their planes. The cylin- 
der is then thought of &R being cut through these rings and the ex-&rnal 
moments are applied in the secticna. With the notation of figure 1 the 
distorted shape of the stringera $s'aeraumed to be 

. ,' 
Wr = '&h/2) b - cog (2xX/L) 1 = ,aok~ sin*- (KX/L) (1) 

where wr is the radial deflection, and kl a proportionality factor 
dependent upon the angle rp.. 

The circumferential wave'pattern could not be d&e d with suffi- 
cient accuracy in the tests. It is assumed, therefore, to be represented 
by the following trigonometric expression: 

Wr = k2[(ao + al co8 nq + a2 cos 2rq + as cos 31xp + bl sin nrp 

+ b2 sin 2rq + ba tjin 31@)3 @I 
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where .k2' 3a' a propcrtionality faoj;or.dqq.dent ,upon. xi (Because of 
equation (1) k2 is sin2 (n/L).) Equation (2) is'valid, provided 

. 
When cp ie greater than.n/n, ' 

. 
the deflect;tona are aeeumed to be zero. 

Consequently n is the parameter defining the length of the bulge. 

Since in thin rings extensional deformations involve much more 
strain energy than do bending deformations, the deflections of the rbge 
are aseumed to be inextensional. This wgumpticn determines the twen- 
tial displacements wt when the radial displacements are given. The 
connection between the two wa8 developed in reference 3 and stated in 
equation (4a) of that reference: .' :.. . 

Wr = Aft/* 

It followa from equations (2) and (3) that wt may be taken as 
. s 

wt = kz[-aoq L (al/n) sin &p - (a2/2n) sin 2nq - (a&n) sin 31-g 

+ (h/d COB q + (b&d COB 2~ + (bd3n) co8 3~ 3 

provided . 

0 i cp 5 x/n 

(3) 

(41 

Because of the eymmetry cf both structure and loading these erpres- 
eiona are equally applicable when the angle 9 is measured from either 
one-of the edge stringers. An obvious IAmitation of the formulas is 

, 

‘. . . a+(fl/n):<x. . . 
1 

.’ 
(5) 

If it is required that there be a smoath transition between the 
bulge and the nondiotortsd part of the cylinder at .cp =I .(R'/n), then the 
follow5r.g conditiona muat be eatisffed: 

(1) The tangential dieplacement muet. vanieh: ,' . . I .,,. -". 

. I. wt ,= p when cp =.s n / .L *: _....a -Jr @a) 
I * 

(2) The radial d&&cement &at vaniah: ..I i:; I ' ...%-;. ., :. -; 

: ur =.O . when cp = x,/n . .: I . -.' ;. ': ( 6b.l 

(3) There must be no.sudden. change in the direction of the tangent: 
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aw,/?qJ = 0 when cp=nn. / 

(4) There must be no sudden change in the curvature: 

b2Wy/a(p2 = 0 WhWl rp = ?,D / 

The mathematical form&&ion of these requirements was hiscussed in 
detail on pages 10 and ll of reference 3. The four conditions contained 
in equations (6a) to (6d) establish four relationships between the 
Fumier coefficients fn equation (4) and nqke it pcssiblo to express & 
four coefficients b$ means of the remaining three. If ao, al, and bl 
are retained as the basic parmeters, the foU.owZng four equations are 
obtained: 

(a&0> - a (b&o) = b (81 

and after substitution of the exgreasiona contafned in equations (7), 
a combination of equstioms (1) end (2) &Yes for the radial displacement 

where 

Wr = a& sin2 (SIX/L) (91 .- 

k1 = [I + a COB ncp + (1.6a - 1.8) toe 2.@ 

+ (0.6a -+0.8) coa 3Txp -t b sin mp + (3.2’b’+ 3.6~) sin 2rq1 

+ (1.8b + 2.4~r) sfn 3ncp] ,. (94 

SimU.arly the textgential displacement becomes 

wt = aok sfn2 (xx/L) (10) 

ka = (l/n)[-rslp - a sin ~JTI - (l/2)(1.% - 1.8) sin 2ncp 

- (l/3) (0.G - 0.8) sin 31wp + b cos lup + (l/2) (3.2b + 3.6~) cos m 

+ (1/~(1.8b + 2.4~) COB 3-1 m4 
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Equations (9) and (10) Eire valid, provided 

0 5 cp 5 n/n (lob) 

. When cp is greater than z/n the deflectfone are amtuned to vanish. A 
typical example of the deflections at buckling in the plane of the rings 
is shown in figure 2. 

CALCULATION OF THE BI!Pm EFERGY 
. 

Strain Energy Stored in the Rings 

The strain energy stored in half of any ribg is 

U = (l/5’) [(E&/rs~ f'n[% + (a~rbP2)] ' acP 
0 

(11) 

in accordance with equations (c) on page ll and (7) on page 12 of refer- 
ence 3. Substitutiqn of the value of wr from equation (9) ad summa- 
tion over all the rings contained in the axial wave length yield 

p4 * dn 
Ur = (l/2) (ao2/rs) 

4 
(EI)y sin * J-j/L, c 

j ' 11 + a(1 - 
L 

n2) cqs nrp 
3= 

/ 

+ (13% - 1.8)(1 A 4n2) cos 2rq + (O.&L - 0.8)(1 - gn2) COB jncp 

+ b(1 -- n2) sin riq + (3.2b + 3.6~~) (1 - 4n2) sin 2q1 

+ (1.8b + 2.4n)(l - gn=) 8h 3q1 ’ dq 02) 

where Ur is the &rain energy stored in all the rings in one-half of 
the cylinder. The subscript j refers to the indiyidual rings the 
total number of which is m within the length of the cutout. If the 
integration is carried out and the value'of the definite integral is de- 
noted by M it is pomibls to mite 
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no = [SC + lo.o53og6(1 - gn=) + 206.01005(1~ 4n2)2 + 90.303381(1- %=I= , 

- 18.095573 (I - 4n2) (1 - pn2) ] 

+ a [-9.0477868(1 - 4n2)2 - 1.5079645(1 - pn’)= 

+ 30.159289(1 - n2) (1 - 4n2) -t 18.095573 (1 - 4n2) (1 - gn2) ! 

+ b [4(1- n=) + 2.40. - g.c?) + 113.69784 (1 - 4n=)* -I- 42.636690(1 - %L=)~ 

-I- 2.4(1 - n2)(l - 4n2) - 3.68(1 - 4n")(l. - p12)'l 

+ a2 I (17/2) (1 - n=)=-+ 4.0212386(1 - 4n2j2 + 0.%54867(~ - Fn'fl 

+ b= [(,+)(1 - d)= + 16.084~4(1 - 4n=)=+ 5.0893W - %=)=I 

+ ab [6.4(1 - n2)(1 - 4n2) + 3.84(1- 4n2)(1 - W2) 1 (13) 

The strain energy is therefore 
m 

ur = (112) (ao2/r3)M 7 (XI), sin4 (M:/L) (14) 
j&i 

When the bending rigidfty (EI)r is the ssxe fer all the rLngs, the 
summation yields a result in closed form as was shown in the a;?pendfx 
of reference 32: 

. 

sin4 (nxj/IJ = (3/8)(m + I> (15) 
, 

jd 

provided 

When m= 1 the value uf the mmnatlon is 1. The strain energy of 
bending stored in dl the r-8 is oonsquently 

1n equation (16) the value of M depenpB upon n, a, and b. Values of 
M ccmguted for n = 4, 2.6%. . ., 2, 1.6, 1.333. - . B to 
s = 2, 3, 4, 5, 6, res-gectivelg, are listed ifi table I. These values of 
n correspond to buckling patterns in which the bulge ends at one of the 
16 stringers contained In the apecimsna tested. 
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Strain Energy Stored in the Stringer8 

The strain energy stored in the &ringers because of bending in the 
radial direction ie 

II 

U&r, = 7 (1/2)(EIJ~trr j'(a2wr/axY2 dx 
--i 0 

07) 

where the summation ie extended over alJ.,the stringers contained in one- 
half the cylinder. Sulxtitution of the value of wr from equation (9) 
into equation (17) and integration yield 

II 

U Strr = 1 (1/2)(EI)*tr4- a, k12(2n2/L2)' coa2 @lx/L) f.k 
0 

= 80~ 
4s.T 2 (X /L ) Lkl (EI)sirr WI 

The moment of inertia I,trr of the stringer varies around the 
circumference of the cylinder because the effective width of the aheet 
to be added to the stringer section changes. The valuee of Iatrr were 
determined,for each of the cutout size8 investigated, according to the 
principlee stated in reference 1. Similarly ki2 wan computed for each 
stringer. 

The strain energy stored in the stringere because of bending in the 
tangential direction ie 

L ‘Y 
wxct = >, (l/2) (EIhtrt b (a2wt/ax2)2 dx (19) 

where the sumnation ie extended over all the &ringers contained in one- 
half the cylinder. With the aid of equation (10) the etrain energy can 
be given 843 

%trt = ao 'b4b") ~r,2@&trt @a 

Since both k, and Ietrt vary from stringes,to.stringer the summation 
indicated in equation (20) wan ev-aluated numerically for each cutout eize 
investigated. 

The rjkain energy atored in the stringer because of torsion ie 
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Ln thI6 equation' (l/r)(%w~)J(ax &) 'is the u&t'&gie pf twist of 
the stringer, and the &matio~-,mst be .&&led &t.oyer &I. the '. 

.'stringeYs contaiiled in one-half the cylZri&ir. liri the cxpremion fcr 
the Saint-Venant torsional rfgidfty,- 

C= 0.14a4: . (212) 

since the test specimens were provided with square eection 3tri@r3 
of edge length a. Differenti&ticl?l give8 - 

@2w,)J& *I = aok4(7C/L) sin (23Ix/L) 

where 

k,= n[- a sin ncp - (3;% - ji6) sin w' - (I.& - 2’.4)’ 

+ b COB ncp + (6.411 + 7.23~) clis ap t (5.41~ + 7.z7r) . . . . . _ 

Hence the stm&i.ener& of tom&Is ' _ a1 ~ 

where the summation is extended to i&Ude all the stringers contained 
in one-half the cylinder. Tbe term GC is before the sLlmmation sign 
in equation (23) since acccrding to S&.nt Venant the mriation of the 
torE!iO,nal rigidity, mUsedby the ddfferent zrmunta of effective 
tidth of sheet, is so EUZU that it wan con&dered permissible to 
a.Esune GC a.ccmf&mt. 'Agafn a nurnsriceJ. e;%L~Btfon of the summ- 
tion was derried bit when the' strainm&ergy wte cziLculated. 

Strain Ibergg of Shear Stired in the Sheet 

The t3hear atrain energy in a pass1 ii3 t&en a8 b&big proporf;ional 
to,the average effective shear rru3dubm Geff inultipl$ed by the square 
of the a&age she& strain 7 tn the pe~@.~ 'I'he latter ia-.&dou- 
lated from the displacements of the'four corners of the +el aa wa8 
done in reference 3. Then the total atrain energy of shear stored 
In the sheet is : '. . - - 

u,, = (l/2) 
c 

r2 Geff i, td (24) 

where the summation extends over e2.l 'he ganels contained in one- 
half the cylinder.. -. .- _ . . 
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The value of the effective shear modulus depends upcn the magnitude 
of the corqressive strain in the panei, a6 was 8hOWZI in rsference 13. 
The empirical formula recommended there for the coqutaticn of Geff is 

Geff/Go = (1. - N)e4(E!icr) + N 

where . 

N= O.O275[23(r/d) + 11' (Z?pX) 

and Go is the shear modulus in the absence of compressive stressee, 
s the conrpressive strain prevailing in the panel, and ecr the COW 
nressive strain when the panel of sheet buc$les. 

Since the disglacements in the axial direction are small and of the 
second order, the displacements of the corners of the panel need be in- 
vestigated only in the plane of the rings. The effect of rotation of 
the ring upon the shear was neglected. Fo&s for the calculation of 
the shear strain from the displacemsnts of ths corners were develclped in 
reference 10 and werdpresented in figure 23 of that reference. With 
the notation and sign convention of figure 3 of the present report 
shear strain is 

the 

(26) 

where the first subscript refers to the circumferential, and the second 
to the axial location of the corner of the panel. In reference 14 the 
values of-the numerical factors w and at were determined. Smli- 
fled formulas were given on page 27 of reference 14 which represent 
these factors very accurately when the srgle ' d/r is of the order of 
magnitude found in monocoque fuselages. The formulas can be written in 
the following slightly changed form: 

5 = (l/lO)(d/r) = (1/10)(2x/S) 

a--Ii = - l/2 

U sh 

yield 
._m 

= 0/2)b&d~, )- Qj '7 (Geff/G& Ri 
j& 1G-b 

(28) 
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-&me & is a function of I cnly, and R a function of cp only. The 
n 

& gika a tisult in cloeed form: 

providad . , 

m>l . C34 

men m = 1, 
7 
p2 *, . (29b) 

The results of the summation were listed in equations (24) of‘ reference 3. 

The mea&ng of the symbol. R ie 
,. . 

The vd.uee of h,i, kl,i+l, k,i, and k+~+~ are obtained f-those 
of kl and ke (equation &a) and (lOa>), respectively, by replacing 
the angle cp by 2zi/S or 2~~(1 + 1)/S: 

k,i = [l + a COB (2mi/S)+ (1.6a - 1.8) COE (4mi/S) 

+ (o&a - 0.8) COB (c;m~/s) + b ten @ami/s)~ . . 

+ (3.2b + 3.6~) sin (4ml/S) + (I.& + 2.4x) sin (w/S)] (jOa) 
.' 

ksJi = (l/n)[-(2mi/S) -a sin (m/S) - (1/2)(1.6a - 1.8) sin (&d/S) 

- (l/3) (0.h - 0.8) t3iIl (6Yrni/s) + b CC6 (2YcRi/S) * 

+ (1/2)(3.z% + 3.6~) COR (4ti/s) + (1/3)(1.8b + 2.4~~) COB (6a/s)l 
. 

(30% 1 

In the calculatior;s the B quantities were mumed up numerically. 
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It wae observed &L the exp&&nte deecribed in reference 9 that 
the stress distribution wan not linear in the outout portion of the cyl- 
inder, although the deviatione fram linearity were'not large ate a rule. 
A good approximation to the experimental curve6 w&a obtained by aB8umdnn 

a linear force dietribution which ie not equivalent to a linear etreas 
distribution became of the varying amount of effective sheet added tc 
the staer section. Strain-distribution curves calculated on the a8- 
aumption of a linear force distribution are compared in figure 4 with 
strains measured in the experiment%. The expreeeion used for the CabU- 

lation of the force acting upon the ith stringer ie 

Pi = pcr (,,a 1% + (2xi/S) 3 + (6/r)}/[co* a + ,(6/r) ] 

where Per is the c~reseive force acting upon the stringer at the 
edge of the cutout, and 6 is the dietance of the neutral axis frcm the 
horizontal diameter of the cylinder. 

The work done by the external forces acting upor; the atringera fa 
equal to the sumnaation of the forces timee the piaplaceme?!t of the point5 
of application of the fcrces. The displacements of then9 points are 
equal to the shortening of the distance between the end points of the 
stringere duripg buckling. Ccnaequently the work is 

f (&r/ax) 2 '+ (aWt/aX) 2 ] dX (32) ' 

where the summation has to be extended over all the &ringers cantained 
in one-half the cylinder. Subatitutione and integration yield 

L 
w = (1/2)ao2 7 P~(YI/L)~ (k12 + kS2) 02 (2socjLj dx 

.-I 

= (l/4)(7r2/L)Pcr ao2~(Pi/Por)(k12 + b2) 
d (33) 

The.summation in the right-hand member of equation (33) wae carried out 
numerically. 
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The buckling.condition is 

Ur + Ustrr + Ust, + Ut + Ush 5 W (34) 

where the values of the quantities must be taken from equations (16), 
(18), (2-O), (23), (28), and (33). Equation (34) was solved for Per, 
contained in W, by the use of the following procedure: 

First, a value of n was assumed corresponding to a circumferen- 
tial wave length extending over an integral number of stringer fields. 
With this value M, kl, ks, and & were computed. Next, Per was 
assumed. This asaumptiori'permitted the ce.lcul&ion of the effective t 
width of sheet and consequently'the-moments of inertia of the stringers 
8s well .a8 G&f&. The summations were then carrfed out. Substitution 
of the results in'equatidn (34) yields R pol&mial of the second degree 
in a and b in the left-hsnd member, and another polynomial of the 
second d&ree In the right-hand mesi&er, the latter multiplied by Per, 
Solutfon for P,r gives a frac&on which can be represented spibolic~ 
a8 

P pda,b) 
cr = Pm 

(35) 

where pi =d ~2 are second-degree polynomials in a and b. The 
values of a and b, the parameters defining the buGtied shape, must 
be chosen so as to mske Por a minimum. Itie known from the calculus 
that P,, can be minimized by setting . 

PC, = 
pl(a,b) = &l/aa &/ab 
P2(a,b) &&at3 =.sqz (36) 

The partial differential coefficrents of the polynomials p1 szd ps 
are linear functions of a and b. muatione (36) represent three cop 
necticns between Per, a, and b. 

'verging trial-and-error method. 
They were solved by a.rapfdly Cod- 

First, 'a and b were calculated'from 
the linear equations with the aid of an ass&d value of 'Per. The val- 
ues of a and b so determIned were then substituted into the quadratic 
expression for Per. The procedure was repeated with the aid of new as- 
sumptions for Per until the value obtained from the quadratic expres- 
sion was close enough to the assumed value. 
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When the value of Per obtained in these calculations differed 
materially from that assumed at the outeet, the momenteof inertia and 
the effective shear modulus had to be calculated again and the entire 
procedure repeated. AU the calculations were carried out with different 
values of n. The buckling loads corresponding to these different values 
were congared, and the smallest one was considered as the true buckliw 
load. Detaila of the procedure may be seen from the numerical example 
given in the appendix. 

COMPARISOIV OFTHEERYANDEKPERlMENI' 

Numerical calculations werb carried out for the cylinder shown in 
figure 1 for all threeofthe sizes of the cutout indicated. In each 
case the minimum value of the bucHing load Per wa8 -obtained for 
n = 2.666, thait'is, when the bulge extended over .t&es stringer fields. 
A typical buckling pattern is 'shown iti-figure,2. It .correspon& to a 
cylinder having a go0 cutout. 

Some detsils of the resulta of the calculations are presented in 
table II. The bending moments corresponding to the minimum buckling 
load are plotted against the size of the cutout in figure 5, which ahO 
containa the observed bending r&men-t at-buckling taken from the eaeri- 
mental report (reference 9). 

CON&IONS 

A etramnergy theory haa been developed for the calculation Of the 
buckling load in general instability of reinforced circular monocoque 
cylinders which have a symmetric cutout on the compression side and are 
subjected to pure bending. When the theory was applied to the teat cyl- 
inders of the earlier experimental report it was found that at buckliq. 
the bending moment applied to the cylinders having a 45,',' 90°, and 135 
cutout wae 89-3, e.8, and 44.5 percent, respectively, of the bending 
moment under which the eeme type of cylinder buckled when there was no 
cutout. The corresponding values obtained in the experimental investiga- 
tions were 66, 47; a& 31 percent when based on.the experhental averages, 
and 68.2,' 50.6, and 31.3 percent when-based on the highest buckline; loads 
observed. .' ' 

Polytechnic Institute of Brooklyn 
Brooklyn, N. P., July 8, -1946. 
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As a numerfcal exarqp2.e of buckling load determihatfon, calculations 
are presented which correspond to cylinders 19, 20, and 23 of the test 
series described in reference 9. The following characteristics of these 
specimens will be needed for calculation: 

Radius,r .................. . ....... in ... 10 
Length.of cutout, L . I ........... :.". ..... in. 19.29 
Distance between acacent rings; L1 ... :l ........ in ... 6.43 
Number of rings contained in the length or cutout, m ....... 2 
Ring cross section ........ 1/8 bg 3/8 in. (+SJT altinwn all;? 
Number of stringers in Full portion of the cyUnder, S. . ..... 
Stringer spacing along C'fmxmf~race, .d ........... in. 3.927’ 
StrTngcr cross section. .... in. . 
Sheet covering thickness, t .. .' 

.3/8 x 3/8 WSGC a;il,mi.zd; 
... . in. 0.012. . C 

Cutout angle, 2a. ..... i ................ deg. .90 
Young's modulus, E ................. 
'Stringer sheer modulus, G i 

psi .. 10.5 X 10' 
. ; .......... .. ; psi.. 

Sheet shear modulus at z'ero compressive~lcad, Go 
... 

psi 
... 3.9 X lo6 

3.9 X lo6 

Computations are first even corresp~ to an assumed integral 
number s of stringer fields, say 8 = 3, fncluded in the bulge on cne 
eide of the cylinder. The c,orrespczxUng value of '11 can be obtained 
from equation (Al) 

n = S/(28) W 

in this case n = 8/3 = 2.666 . . . Substitution of this value in equa- 
tion (13) gIve8 

M = 180,623.&27 + '8&J-5@> + 93,272.28&B. 

+ W99.449%.* + l2,14O.&k3b? + 2,892.2@kab 

as can be seen from table Z.- Substitution in equation (16) yfelds: 

U, = (3/16) (ao2/lCCO)(10;5 x lo6 ,X 80.35 x lo-)(2 + l)M (4) 

where the moment of inertia .I, of the ring cross section augmented by 
an effective width of'sheet (taken equal to thk width of ,the ring) is 

I, = ,(1/x3 (o.u5 + 0.012)“(0.375) = 80.35 x lo* w4 (A41 
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With the aid of equation (A2), the ring strain energy becomes: 

Ur = ao*(85,718.0013 + 4,190.2299a + 44,263.m~ 

+ g48.872ga? + 5,T61.2834b2 + 1,$2,5799ab) (A51 

The functions kl, ks, & can be calculated from the assumed value 
of n.. Eor this purpose it is convenient to arrange the trigonometric 
functions needed and their coefficients in.tabulsr form, as shown in 

* table III. 

In this table the first three rows contain the trigonometric fun@ 
tions of the e.n@e .cp. 'As only values of kl, ksr lo which correspond 
to integral numbers of str%nger fields will be used in the summations to 

I. be evaluated later, the 'angle cp was replaced by its equivalent (2ni/S), 
where 2x/S is the angle subtended by one.stringer field. 

The third, fourth, and fifth rows contain the coefficients of the 
trigonometric functions appearing in each co- above them. T@ese coef- 
ficients are different for kl, ks, and .k+ and can be obtained from 
equations @a), (lOa), and (22a), respectively. 

The value of kl for i = 0 is obtained by multiplying .the exPres- 
siona appearing in the same column in the first and fourth rows, snd by 
adding the resulting eight products. Products of the elements of the 
second and fourth rows will lead to the value of kl for I = 1, and 
simile,rly for all others. The results are tabulated in table IV. 

The next step is the assumption of the critical load PC,. for the 
purpose of obtaining the effective width of sheet 2w to be added to 
the stringers, the moments of inertia of the stringers, the effective 
shear modulus Geff, and' the shift of the neutral axis from the ~~HJXXF- 
tal e~is of the cylinder F. From an assumed value of PC, = 3370.5 lb, 
6 W&B found to be 2.4 in.; the other quantities are listed in table V. 
In table V column (2) is obtained from equation (31); column (3) by di- 
viding column (2) by E = 10.5 X 1O'psi. Columns (4), (5), and (6) can 
be most conveniently obtained by the use of a previously drawn curve of 
the strain E against the area :&ff of stringer and effective width 
combinution. A curve of this type was used in the present calculations 
and was constructed with the aid'of the following formula for effective 
width: 

2w.=.(l/e)(d/r) +.3t'+ 1.535 [(t/d)(Er - 0.3t)rl'" 
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Columns @-and (8) were csLcul&ed sccording to the princi&es stated in 
reference 1. In column (9) the vsJ.2 of the buc&Jng load of the sheet 
Ecr was c~cI.&L~~ to be 3.3 ?Z 10 . Colon (10) was obtained from 
eq=*ion (25) . . . 

The straid energ stored fn the stringers because of bending in the 
radial direction is from equation (l-8): 

2 

r4 
U str, = a~2 p /(19.29F 1 10.5 x lo8 ' r kl= I,* (A6) &CO r 

afnce the modulus E is constent for aXL str9xers. The summation in- 
dicated is the sum of the 
for eny value of' i, snd 
for the seme value of i. 
for column (7) fn table V 
tions yield: 

product of the values-in column (7) in table V 
the.squares of the quantity k1 in table Iv 
Ustrt is obtafned by substftutfng column (8) 

qnd & for kl in table IV. These opera7 

u str = %trr + Ustrt = ,3,&2,882.~9ss -l 1,4j3.839h 
. . . 

+ 53,374.56&~~ + 3,g45.3160a2 + .?,242.355&* 7 409-406Yab). (A-T) 

The torsional strain energy in the string&s contains the smtfon 

7 k4*> as can be seen from equatfon (23). This is the sum of the squares 
--I 
of the values of k* given in table Iv. The conglete result for the 
torsional strati energywas found to be: 

=t = a.02(300,981.0280 + 25,Op2.176Oa + 1~,~84.3002, 

+ 1,656.711&* +.z ,,&30.3894b: +.6,426:61Oab) 
. w 

The expression &ven in equation (28) for the streLin energy due to 
shear in the sheet covering required the evaluation of the quantity Zi. 
This' quantfty, .given fn,,equation (301, can be easily obtained if it is 
noticed that the terms kL,i - kl,i+= and ks,i + ks,i+I are respec- 
tively the difference snd the sum of terms appea in aajacent rows Of 
the kl and ke columns of table IV. With the values of Qf/Go 
taken from table V and with ur = 0.03927 and &t = -0.5 from equation 
(27) the shear strain energy was found to be: 
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%h = %2(~6,645.4~78 + 6,416 .Oll2a + 5,515.52#b + 1,1.80.02~a 

+ 1,232.0&6b2 + 188,3523ab) (A91 

The work done by the external forces is given in equation (33). Each 
term of the sutn~~tfofi co;~Q~!~ed ti that equation 1~ the sum of the aquaree 
of the vr'Luo.r of 'k axl k (table TV) multfplied by Pi/P,,, which 
cm be obtained from tabie V. The result of these calcul.atianEI was: 

w= Per i~~(l7.5221+03 - 2.594795a + 9.7965o9b 

+ 1 d2668eL + l.426108b2 - 0.429835ab) w-of 

The values of the strain ener 
thm (A51, tA71, 081, (A91, and AlO) were subetituted in equation (341, T 

es and.external work taken from equa- 

with the result: 

a,"(506,227.034 + 34,244.578a I- 268,738.347b 

+ 7,730.9227a2 + 37,066.lop3b~ + 7,578.1357ab) 

= Ro 2 P,er( 17.522403 7 2 l 59+795a + 9 -7965~ 

+ 1.422668a" + 1.426108b2 - 0.429835ab) Wl) 

According to equation (36), equaticn (All) W~,EY solved for Per, and the 
number&or and denominator of the resulting expression were differenti- 
,atad with respect to a and >. The result ie given in equation8 (A12): 

a244.578 + 15,461.8454a + 7,578.1357b, p 
-2.594795 + 2.8453368 - Oo4W835b cr 

268,738.qq + 7,57%1357a + 74,132.2o@b = p 

9*796509 - 0.429835a + 2.8j22S6b cr 
I 

(A121 

These equations were reduced to two linear equationa in a and b by 
.assuming a value ofi Per' = 3770 .and cloariw fractions. These equations 
were solved simultaneously for a and b, with the -followin& result: 

a = -3.054l. 

b= -3.2142 
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. 
. ,. . . . 

Substitution of these values in equation (All) led to a net v&c of 
per = 3793 lb. This result was considered to be mffickently ClOEE t0 

the original aa&mptfon to r&se it unnecessary to repeat the calculatiom 
for this value of 11. 

Repetition of the entire procedure for,v&ee of I1 co&e*pozlti* 
to 8 = 2 and a = 4' gave .Pcr'= 11544 lb and Per = 392 lb, respec- 
tively. The value Per = 3793 lb was the lowest of the three and wa8 
therefore considered the true bucking load- . 
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Pement “cr.. PEavent 
me of 
xltout s=& 

%r %r difference highest difference 
a a b P cr Caloulated 

Cdeg) 
aYera& of erperi- tlxpeti- of highest 

experimental mental ILmntal experimenta: 
avera@3 mepnsnt llmment 

45 2.- 4 0.3011 -3.6903 
z 2A6.6,. 2 . 

13,564 
-3.1734 -3.1710 
-2.7612 

3,722 w3,109 19% bo 33.9 
3,875 

197,600 30.6 
-3.2710 

90 5 4 .3417 
2.666... 

-3.6809 l&,544 
-3.0541 -3.2242 3,793 187a.6 135,800 37.9 146,000- 2a.2 
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TABLl3m 

I caus~t g+xp COB ~ S COB !GL S sin 2nd S sinn S SlIl~ S 

b 1 0 1 1 1. 0 0 0 

1 1 1.047197 o-5 -0.5 -1 0,866o295 0.%&255 0 

2 _* 1 2.094395 -0.5 -0.5 1 0.866Oi55 -0.8660255 0 

bfultlpl2er a l&3- O.&l- b 
;2 . t 

lab t 
for k, 1 0 1.8 0.8 2.4x 

Mult1plAer o&b + 0.22pb t -0.37% -wa + -0.075a t 
for k, 0 -0.375 0.37% 2.1205750 o.g424n8 0.3375 o-lo 

bhlt#ler 17'.0666...a t 14.4b t -2.666...a -fL5333...a t 
2.: . 

t 
for k 4 d 0 2*&6...II 6wl85789 6fW&789 9.6 

. 



TAIKE IV 
a: 

JG k3 b 

-1.6 + 3.2a 3.0630528 t 1.2b 120.637166 t;4.I.j333...b 

12.4945177 .- 0.w t 3.6373Onb -2.10318072 - o.;&5672e - 0.337511 -82.164026 - g.6gg4969. - 21.6b 

-8.6945177 - 0.7e - l.gO5256lb -1.19549133 - 0.06495191a - 0.263% 21.845445 + 5.0%&&1 t 4.533...b 

TABLE v 
r 

(1) (2) (3) (4) (5) (6) (7). i8) (9) (10) 

i pi EA E Aaff * Iatr~ I&q E/Ecr Geff/Go 

0 3370.5 3.21 x lo4 2l.4 x 10" 0.1505 1.567 r?‘Sj x 18. 3,500 x 10’ 6.06 0.495 

1 2225.815 2.1103 12.8 2.ocb .165. 234-9 3.88' 10,oOq ,562 

” 2 853.75 0.8~1 4.33‘ 3378 3.98 23% . 62,200 .1.312 .745 ,. 
-I 
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FIGURE I.- MONOCOQUE CYLINDER. 5 
r 



NAOA TN NO. 1263 

n = 2.666.... 

; 

= -3.0541 

= -3 -2142 

S = 3 

Fig. 2 

2a = 9o” 

NATIONAL ADVISORY ’ 
COHMITTEE FOR AERONAUTICS 

FIGURE 2.- TYPICAL RADIAL DEFLECTION PATTERN. 
DEFLECTION EXAGGERATED 
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FIGURE 3.- NOTATION AND SIGN CONVENTION 
FOR SHEAR IN A PANEL. 
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FIGURE 4.-COMPARISON OF EXPERIMENTAL AND 
ASSUMED STRAIN DISTRIBUTION: 
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